
SIMD Programming in GNU Radio:

Maintainable and User-Friendly Algorithm

Optimization with VOLK

Tom Rondeau (tom@trondeau.com),
Nick McCarthy (namccart@gmail.com),

Tim O'Shea (oshea@umd.edu)

2012-11-30

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 1 / 29

Outline

1 Introduction

2 VOLK Basics

3 Using VOLK

4 VOLK Issues

5 Results

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 2 / 29

Introduction

I wanna go fast!

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 3 / 29

Introduction

What's the problem?

F. Ge, C. J. Chiang, Y. M. Gottlieb, and R. Chadha, �GNU Radio-Based Digital

Communications: Computational Analysis of a GMSK Transceiver,� IEEE GLOBECOM, 2011.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 4 / 29

Introduction

The SIMD operating space

Implementations of SIMD between processor types and generations.

Intel: MMX, SSE, AVX

ARM: NEON

PowerPC: Altivec

AMD: 3DNow!

Dropped by AMD in 2010; now using Intel's.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 5 / 29

Introduction

SIMD Generations on Intel platforms

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 6 / 29

Introduction

Various SIMD extensions make it hard to generalize

No high-level programming interface that is cross-platform.

Intel's intrinsics are a start (between Intel and AMD).

Still feels like assembly programming.

Compilers only do so much:

GCC handles minor vectorization of C/C++ code.

ICC does a better job on Intel platforms.

Clang? (sorry, no direct experience, yet).

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 7 / 29

VOLK Basics

VOLK Basics

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 8 / 29

VOLK Basics

De�nitions

Kernel: the abstract unit of VOLK that represents a core
mathematical or algorithmic function.

Proto-kernel: platform/architecture/processor speci�c
implementation.

Alignment: required/expected memory alignment for SIMD
operation (e.g., 16-bytes, 32-bytes).

Dispatcher: Umbrella of a kernel to properly handle memory
alignment issues.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 9 / 29

VOLK Basics

Alignment

Many SIMD extensions want to operate on memory-aligned
vectors:

SSE with 128-bit registers expects to operate on 16-byte
alignments.

AVX with 256-bit registers expects to operate on 32-byte
alignments.

Using unaligned vectors with aligned calls will cause a crash.

Using unaligned calls tends to incur a performance hit.

VOLK kernels always have aligned and unaligned versions.

The dispatcher tests the alignment and calls the right version.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 10 / 29

VOLK Basics

VOLK proto-kernel naming scheme

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 11 / 29

VOLK Basics

User's Interface to VOLK

Kernel names are abstracted from proto-kernels and drop �nal
tag.

Kernels still have speci�c alignments.

Users access via the dispatcher.

Dispatchers are a further abstraction and do not have alignment.

Naming example (multiply 2 complex �oating point streams):

proto-kernel: volk_32fc_x2_multiply_32fc_a_sse

kernel: volk_32fc_x2_multiply_32fc_a

dispatcher: volk_32fc_x2_multiply_32fc

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 12 / 29

VOLK Basics

VOLK Hierarchy

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 13 / 29

VOLK Basics

For aligned vectors on an ARM processor, the

following path is selected:

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 14 / 29

VOLK Basics

Selecting from multiple Proto-kernels

Some systems have multiple available proto-kernels.

VOLK must select a proto-kernel for both aligned and unaligned
calls.

Di�erences in the systems and proto-kernels can make this
choice non-obvious.

By default, VOLK picks the highest version available (AVX >
SSE4 > SSE).

Use volk_profile instead.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 15 / 29

Using VOLK

Using VOLK

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 16 / 29

Using VOLK

An Aside on Memory Alignment

No real cross-platform support for allocating aligned memory.

OSes and compilers tend to have di�erent ways of doing this:

GCC directive: __attribute__ ((aligned (x)))

MSVC directive: __declspec(align(x))

where x must be a constant (#de�ne 16)

posix_memalign(void **ptr, size_t align, size_t s)

obviously, only for POSIX systems.

Hand-rolled solution:

allocate memory larger than needed; return pointer to �rst
position to meet alignment.

must keep track of original pointer to properly free later.

Other libraries

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 17 / 29

Using VOLK

Example code

#include <fftw3.h>

#include <volk/volk.h>

int main(int agrc, char **argv)

{

const long int N = 1000;

const size_t alignment = volk_get_alignment();

float *a = (float*)fftwf_malloc(N*sizeof(float));

float *b = (float*)fftwf_malloc(N*sizeof(float));

float *c = (float*)fftwf_malloc(N*sizeof(float));

// fill a and b with values to be multiplied

volk_32f_x2_multiply_32f(c, a, b, N);

fftwf_free(a); fftwf_free(b); fftwf_free(c);

return 0;

}

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 18 / 29

Using VOLK

Examples: Setup

CPU: Core i7 870, 2.93 GHz

Real kernel:

volk_32f_x2_multiply_32f

aligned kernel: a_sse

unaligned kernel: u_sse

400 million samples

Complex kernel:

volk_32fc_x2_multiply_32fc

aligned kernel: a_sse3

unaligned kernel: u_sse3

100 million samples

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 19 / 29

Using VOLK

Examples: Results (seconds to complete)

Real

Generic Unaligned Aligned
Max 2.422 0.757 0.717
Min 2.399 0.710 0.674
Avg 2.406 0.740 0.701
Var 3.36e-5 1.72e-4 1.48e-4

Complex

Generic Unaligned Aligned
Max 2.644 0.409 0.398
Min 2.545 0.368 0.366
Avg 2.568 0.390 0.383
Var 6.33e-4 1.18e-4 7.43e-5

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 20 / 29

VOLK Issues

VOLK Issues

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 21 / 29

VOLK Issues

Memory Alignment: SIMD instructions often

require some alignment (16 or 32-bytes)

Bu�ers start page aligned, but the scheduler optimizes for speed and
produces noutput_item number of samples to operate upon.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 22 / 29

VOLK Issues

Memory Alignment: SIMD instructions often

require some alignment (16 or 32-bytes)

After the �rst pass, we are not guaranteed a particular alignment.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 23 / 29

Memory Alignment: Keeping track of alignment

Scheduler

Scheduler tries to keep alignment but allows unaligned bu�ers
when it cannot do anything else (usually when the number of
items is less than the required alignment).

Works to recovery alignment as soon as possible.

Passes as large a chunk of memory as it can as quickly as it can
� do not reduce throughput or add latency.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 24 / 29

Calling the VOLK Kernel

Generally, just call the dispatcher.

This handles the alignment testing and can be optimized.

Scheduler still tries to keep bu�ers aligned.

Speci�c calls to test current bu�er alignments:

is_unaligned() returns True if the scheduler passed unaligned
pointers.

Can still be used in work() function.

Generally not necessary now with dispatchers.

VOLK has volk_is_aligned() to test bu�er alignment, too.

Used by dispatchers.

Mostly not needed outside fo VOLK, but it's available.

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 25 / 29

Results

Results

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 26 / 29

Results

Current Results: Simple Type Conversions

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 27 / 29

Results

Current Results: Basic Math

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 28 / 29

Results

Thank You.
Tom Rondeau (tom@trondeau.com)

Nick McCarthy (namccart@gmail.com)
Tim O'Shea (oshea@umd.edu)

Tom Rondeau (tom@trondeau.com),Nick McCarthy (namccart@gmail.com),Tim O'Shea (oshea@umd.edu) ()SIMD Programming in GNU Radio: Maintainable and User-Friendly Algorithm Optimization with VOLK2012-11-30 29 / 29

	Introduction
	VOLK Basics
	Using VOLK
	VOLK Issues
	Results

