SIMD Programming in GNU Radio:

Maintainable and User-Friendly Algorithm
Optimization with VOLK

Tom Rondeau (tom@trondeau.com),
Nick McCarthy (namccart@gmail.com),
Tim O’Shea (oshea@umd.edu)

2012-11-30

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30

Outline

@ Introduction
© VOLK Basics
© Using VOLK

Q@ VOLK Issues

© Results

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 2/29

Introduction
| wanna go fast!

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 3/29

Introduction

What's the problem?

CPU Consumption vs RX Data Rate

70

g0 | *12-T9550 7 |
= = {5-M520 /
x
‘g' 50 XEan-X5550
B 40
E *
3)
2 30
o]
(]
=5 20 4+ I = L — —
& / /{./fl/"'/' T

10 e J/"(_/.»"/.>

0 L= i il L

0 100 200 300 400 500 600
DataRate (kb/s)

F. Ge, C. J. Chiang, Y. M. Gottlieb, and R. Chadha, “GNU Radio-Based Digital
Communications: Computational Analysis of a GMSK Transceiver,” IEEE GLOBECOM, 2011.

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 4/ 29

The SIMD operating space

Implementations of SIMD between processor types and generations.

o Intel: MMX, SSE, AVX

e ARM: NEON
@ PowerPC: Altivec

e AMD: 3DNow!
o Dropped by AMD in 2010; now using Intel’s.

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 5 /29

Introduction

SIMD Generations on Intel platforms

Pentium 4
(Preslcott)

Pentium Pentium 3 Pentium 4

1996 1999 2001 2004

Core R i3, 15, i7
Co're (Peqryn) 13, '?’ 7 (Sandypridge)
- = = T T T T w
2006 2007 2008 2011

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 6 /29

Introduction
Various SIMD extensions make it hard to generalize

@ No high-level programming interface that is cross-platform.
o Intel’s intrinsics are a start (between Intel and AMD).

o Still feels like assembly programming.

@ Compilers only do so much:
o GCC handles minor vectorization of C/C++ code.
e ICC does a better job on Intel platforms.

o Clang? (sorry, no direct experience, yet).

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30

VOLK Basics

VOLK Basics

om Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main

VOLK Basics
Definitions

o Kernel: the abstract unit of VOLK that represents a core
mathematical or algorithmic function.

e Proto-kernel: platform/architecture/processor specific
implementation.

e Alignment: required/expected memory alignment for SIMD
operation (e.g., 16-bytes, 32-bytes).

o Dispatcher: Umbrella of a kernel to properly handle memory
alignment issues.

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 9/29

VOLK Basics
Alignment

@ Many SIMD extensions want to operate on memory-aligned
vectors:

e SSE with 128-bit registers expects to operate on 16-byte
alignments.

o AVX with 256-bit registers expects to operate on 32-byte
alignments.

@ Using unaligned vectors with aligned calls will cause a crash.
@ Using unaligned calls tends to incur a performance hit.
@ VOLK kernels always have aligned and unaligned versions.

@ The dispatcher tests the alignment and calls the right version.

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 10 / 29

VOLK Basics

VOLK proto-kernel naming scheme

volk_32fc_s32f x2_power_spectral_density_32f_a_generic

s -, T

input tags kernel descriptor alignment tag

volk tag multiples of input/output)
type (void if x1) proto-kernel descriptor

output tag(s)

N

volk_32fc_s32f x2_power_spectral_density_32f a_sse_4 b

bit t
i cmdcator T

type (u,ifjic,uc,fc) no rules
(multiple versions
per architecture)

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30

User's Interface to VOLK

@ Kernel names are abstracted from proto-kernels and drop final
tag.
o Kernels still have specific alignments.

@ Users access via the dispatcher.
@ Dispatchers are a further abstraction and do not have alignment.

e Naming example (multiply 2 complex floating point streams):
o proto-kernel: volk 32fc_x2 multiply 32fc_a sse
o kernel: volk 32fc_x2 multiply 32fc_a
o dispatcher: volk 32fc_x2 multiply 32fc

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 12 / 29

VOLK Hierarchy

Dispatcher

Kernel Kernel
(aligned) (unaligned)

Intel ARM PowerPC
SSE SSE2 NEON Altivec
SSSE3 SSE4.1
AVX

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 13 / 29

For aligned vectors on an ARM processor, the

following path is selected:

Dispatcher

Kernel Kernel
(aligned) (unaligned)

Intel ARM PowerPC
SSE SSE2 NEON Altivec
SSSE3 SSE4.1
AVX

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 14 / 29

VOLK Basics

Selecting from multiple Proto-kernels

@ Some systems have multiple available proto-kernels.

@ VOLK must select a proto-kernel for both aligned and unaligned
calls.

o Differences in the systems and proto-kernels can make this
choice non-obvious.

@ By default, VOLK picks the highest version available (AVX >
SSE4 > SSE).

@ Use volk_profile instead.

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 15 / 29

Using VOLK

Using VOLK

om Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 16 / 29

Using VOLK

An Aside on Memory Alignment

@ No real cross-platform support for allocating aligned memory.

@ OSes and compilers tend to have different ways of doing this:
o GCC directive: __attribute__ ((aligned (x)))
o MSVC directive: __declspec(align(x))
@ where x must be a constant (F#define 16)
o posix_memalign(void **ptr, size_t align, size_t s)
@ obviously, only for POSIX systems.
Hand-rolled solution:

o allocate memory larger than needed; return pointer to first
position to meet alignment.

e must keep track of original pointer to properly free later.

e Other libraries

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 17 / 29

Using VOLK

Example code

#include <fftw3.h>

#include <volk/volk.h>

int main(int agrc, char **argv)

{
const long int N = 1000;
const size_t alignment = volk_get_alignment();
float *a = (float*)fftwf_malloc(N*sizeof (float));
float *b (floatx*) fftwf_malloc(N*sizeof (float));
float *c = (floatx)fftwf_malloc(N*sizeof (float));
// £ill a and b with values to be multiplied

volk_32f _x2 multiply_32f(c, a, b, N);

fftwf_free(a); fftwf_free(b); fftwf_free(c);
return 0;

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30

Using VOLK
Examples: Setup

e CPU: Core i7 870, 2.93 GHz

@ Real kernel:
volk_32f_x2 multiply_32f

aligned kernel: a_sse

unaligned kernel: u_sse

e 400 million samples
o Complex kernel:
volk_32fc_x2_multiply_32fc
aligned kernel: a_sse3

unaligned kernel: u_sse3

100 million samples

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30

Using VOLK

Examples: Results (seconds to complete)

Generic Unaligned Aligned

Max 2.422 0.757 0.717
Min 2.399 0.710 0.674
Avg 2.406 0.740 0.701

Var 3.36e-5 1.72e-4 1.48e-4

Complex

Generic Unaligned Aligned

Max 2.644 0.409 0.398
Min 2.545 0.368 0.366
Avg 2.568 0.390 0.383

Var 6.33e-4 1.18e-4 7.43e-5

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 20 / 29

VOLK lIssues

VOLK Issues

om Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 21 /29

VOLK lIssues

Memory Alignment: SIMD instructions often

require some alignment (16 or 32-bytes)

Buffers start page aligned, but the scheduler optimizes for speed and
produces noutput item number of samples to operate upon.

Page aligned

fill

A

Read ptr. noutput_items

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 22 /29

VOLK lIssues

Memory Alignment: SIMD instructions often

require some alignment (16 or 32-bytes)

After the first pass, we are not guaranteed a particular alignment.

Page aligned alignment?

fill
A A

Read ptr. noutput_items

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 23 /29

Memory Alignment: Keeping track of alignment

Scheduler

@ Scheduler tries to keep alignment but allows unaligned buffers

when it cannot do anything else (usually when the number of
items is less than the required alignment).

@ Works to recovery alignment as soon as possible.

@ Passes as large a chunk of memory as it can as quickly as it can
— do not reduce throughput or add latency.

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main

2012-11-30 24 / 29

Calling the VOLK Kernel

@ Generally, just call the dispatcher.
o This handles the alignment testing and can be optimized.
o Scheduler still tries to keep buffers aligned.

@ Specific calls to test current buffer alignments:

o is_unaligned() returns True if the scheduler passed unaligned
pointers.

o Can still be used in work() function.
e Generally not necessary now with dispatchers.
@ VOLK has volk_is_aligned() to test buffer alignment, too.
o Used by dispatchers.
o Mostly not needed outside fo VOLK, but it's available.

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30 25 /29

Results

om Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 26 / 29

Results

Current Results: Simple Type Conversions

Processing time (sec) [1e9 items]

12

10

-l 352
= 351
B volk

Results

Current Results: Basic Math

Processing time (sec) [1e9 items]

2012-11-30 28 / 29

Thank You.

Tom Rondeau (tom®@trondeau.com)
Nick McCarthy (namccart@gmail.com)
Tim O'Shea (oshea@umd.edu)

Tom Rondeau (tom@trondeau.com),Nick SIMD Programming in GNU Radio: Main 2012-11-30

	Introduction
	VOLK Basics
	Using VOLK
	VOLK Issues
	Results

